Code: EC5T5

III B. Tech - I Semester - Regular Examinations - November 2015

DIGITAL IC APPLICATIONS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max Marks: 70

Answer any FIVE questions. All questions carry equal marks

- 1 a) Explain the various data types supported by VHDL. Give the necessary examples.

 7 M
 - b) Discuss about packages and bindings in VHDL. 7 M
- 2 a) Explain the data-flow design elements of VHDL. 7 M
 - b) Design the logic circuit and write a data flow style VHDL program for the following function. 7 M $F(p) = \Sigma_{A.B.C.D} (2,6,7,9,11,15)$
- 3 a) Compare CMOS, TTL with reference to logic levels, DC Noise margin, propagation delay and fan-out. 8 M
 - b) Design a CMOS transistor circuit for 2 input NAND gate with the help of the function table and explain the circuit.

6 M

4 a) Implement 4x16 decoder using 3 x 8 decoders (IC 74LS138) and other logic gates.	7 M
b) Design a 32 X 1 multiplexer using 8x1 multiplexer (IC 74LS151)	7 M
5 a) Design a full adder using two half adders. Write VHDL flow program for the same.	data 7 M
b) Design a 4 X 4 combinational multiplier and then write necessary VHDL program in data flow model.	the 7 M
6 a) Explain the operation of simple floating point encoder.	8 M
b) Write a VHDL Code for 8 Bit Comparator.	6 M
7 a) Draw the logic diagram of 74 X 194 and explain the operation.	7 M
b) Design a 4-bit up/down ripple counter with a Control for up/down counting.	or 7 M
8 a) Compare the static and dynamic RAM's.	7 M
b) With the help of timing waveforms, explain read and wooperations of SRAM. Page 2 of 2	rite 7 M

.